If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+14x-10=0
a = 18; b = 14; c = -10;
Δ = b2-4ac
Δ = 142-4·18·(-10)
Δ = 916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{916}=\sqrt{4*229}=\sqrt{4}*\sqrt{229}=2\sqrt{229}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{229}}{2*18}=\frac{-14-2\sqrt{229}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{229}}{2*18}=\frac{-14+2\sqrt{229}}{36} $
| 27-t=7=t | | 1.5(x-4)+3.5x+6=0 | | (1.6-x)(5.6-x)=0 | | 2x+10+46=180 | | 8x+3x=121- | | h=1.4+(1 | | 2x2+2x-23=0 | | -4(c+4)=-4c-16 | | x=960000+0.04x | | |-8x-5|=-19 | | 2×3x+1=-16 | | |8x-5|=19 | | 18+5v=8v | | 2x+3+x+10=7 | | 15x+3=-5 | | 2v-1=-5 | | x+4=8x-6 | | -16t*t+32t+4=0 | | |-8t+5|=-19 | | -(y2-)=y2-5-2y2 | | -6p^2+60p=0 | | 7q+5=3-2q+16 | | 1x+2÷-3=-5 | | 1+2m+8=3m-2 | | 8x-1=3x+9=3x+4 | | (6x-7)+(4x+11)+(8x-22)=180 | | 0.2y=460 | | 6f-5=2f+8 | | 112x-14=16x | | 11w=-6 | | z-21=-19 | | 0.2y=540 |